Профсоюзы — не только экономический, но и социально-политический институт, поэтому целью их деятельности является реализация как экономических, так и политических интересов. При анализе экономической деятельности профсоюзов в экономической теории предполагается, что они стремятся улучшить для своих членов две характеристики — уровень заработной платы и уровень занятости. Поэтому их поведение может быть описано через максимизацию функции полезности профсоюзов от этих двух характеристик: U = u(W, N), где W — заработная плата членов профсоюза, а N — число работающих членов профсоюза. Или другой вариант представления функции полезности профсоюза: U = u(W, N, W0), где W0 — альтернативная заработная плата в непрофсоюзном секторе рынка труда. Возможны следующие частные случаи функции полезности профсоюза: максимизация заработной платы: U = u(W) (кривые безразличия представлены на рис. 9.2а); максимизация занятости членов профсоюза: U = u(N) (кривые безразличия представлены на рис. 9.2б); максимизация суммарной заработной платы всех работающих членов профсоюза: U = u (WN) (кривые безразличия представлены на рис. 9.2в); максимизация экономической ренты работающих членов профсоюза U = u[(W - W0)N], где W0 — альтернативная заработная плата в непрофсоюзном секторе рынка труда (кривые безразличия представлены на рис. 9.2г). На рис. 9.3 показаны решения для каждого частного случая функции полезности профсоюза за исключением случая максимизации заработной платы. Для него решением будет занятость одного работника — члена профсоюза с заработной платой чуть меньше W3. Для случая максимизации занятости членов профсоюза решением будет точка G, уровень занятости N0, заработная плата W0, равная заработной плате вне профсоюзного сектора. Таким образом, для фирмы и работников не будет разницы между решением о занятости и заработной плате при наличии и при отсутствии профсоюзов.
Рис. 9.2. Цели профсоюзов (частные случаи функции полезности) Для случая максимизации суммарной заработной платы (WN) решением будет точка В, в которой эластичность спроса на труд равна -1 (eD = -1) и предельная суммарная заработная плата будет равна 0 (M(WN) = 0). Заработная плата при этом будет равна W2, а уровень занятости N2. Суммарная заработная плата будет равна площади прямоугольника W2BN20. Для случая максимизации ренты решением будет точка А с заработной платой W1, уровнем занятости N1. В этом случае профсоюз ведет себя аналогично монополии на рынке продукта, уровень занятости определяется горизонтальными координатами точки С, в которой предельная суммарная заработная плата равна альтернативной заработной плате предложения в непрофсоюзном секторе (M(WN)= W0). Все рассмотренные решения для различных случаев функции полезности профсоюзов лежат на кривой спроса на труд DL. Представив функцию полезности профсоюзов как U = u(W, N) и функцию спроса на труд как N = n(W), можно получить, что для точки максимизации полезности профсоюзов - UW / UN = NW, т. е. предельная норма замещения полезности от заработной платы полезностью от занятости членов профсоюзов равна наклону кривой спроса на труд. Таким образом, максимизирующее полезность профсоюзов решение подчиняется ограничению спроса на труд.
Рис. 9.3. Заработная плата и занятость, максимизирующие различные функции полезности профсоюзов Подход, основанный на функции полезности профсоюза, позволяет проанализировать реакцию профсоюза на сдвиг кривой спроса на труд. На рис. 9.4 показана линия предпочтения заработной платы в случае увеличения или в случае уменьшения спроса на труд. Реакция профсоюза будет асимметрична. Если точка Р отражает позицию максимизации полезности
Рис. 9.4. Реакция профсоюзов на изменения в спросе на труд профсоюза при первоначальном спросе на труд DL, то в случае повышения спроса на труд (до D’L) профсоюз вначале стремится к повышению заработной платы и только затем к увеличению занятости. При понижении спроса на труд (до D’’L), наоборот, профсоюз вначале сопротивляется снижению заработной платы и только затем пытается предотвратить снижение занятости. Обобщение различных случаев максимизации функции полезности профсоюза может быть сделано с помощью функции полезности типа функции Стоун—Джери. Тогда функция полезности профсоюза будет иметь вид: U = u(W, N) = (W - g)q(N -d)1-q, где W — уровень заработной платы; N — уровень занятости; g, d, q — параметры функции. Причем g и d могут быть интерпретированы как «минимально необходимые уровни» заработной платы и занятости соответственно, а (W - g) и (N - d) — как дополнительные для членов профсоюза уровни заработной платы и занятости. Параметр q показывает относительную важность для профсоюза дополнительной заработной платы или дополнительной занятости, 0 <q <1. |
Copyright © 20012 - 2014 www.manageweek.ru